

## **LEAVING CERTIFICATE EXAMINATION, 2004**

## MATHEMATICS — HIGHER LEVEL

PAPER 1 (300 marks)

THURSDAY, 10 JUNE – MORNING, 9:30 to 12:00

Attempt **SIX QUESTIONS** (50 marks each).

WARNING: Marks will be lost if all necessary work is not clearly shown.

- 1. (a) Express  $\frac{1-\sqrt{3}}{1+\sqrt{3}}$  in the form  $a\sqrt{3}-b$ , where a and  $b \in \mathbb{N}$ .
  - **(b)** (i) Let  $f(x) = x^3 + kx^2 4x 12$ , where k is a constant. Given that x + 3 is a factor of f(x), find the value of k.
    - (ii) Show that  $\frac{3}{1+x^p} + \frac{3}{1+x^{-p}}$  simplifies to a constant.
  - (c) (i) Show that  $p^3 + q^3 (p+q)^3 = -3pq(p+q)$ .
    - (ii) Hence, or otherwise, find, in terms of a and b, the three values of x for which  $(a-x)^3 + (b-x)^3 (a+b-2x)^3 = 0$ .
- 2. (a) Solve, without using a calculator, the following simultaneous equations:

$$3x + y + z = 0$$
$$x - y + z = 2$$

$$2x - 3y - z = 9.$$

- **(b)** (i) Solve the inequality  $\frac{x+1}{x-1} < 4$ , where  $x \in \mathbb{R}$  and  $x \neq 1$ .
  - (ii) The roots of  $x^2 + px + q = 0$  are  $\alpha$  and  $\beta$ , where  $p, q \in \mathbb{R}$ . Find the quadratic equation whose roots are  $\alpha^2 \beta$  and  $\alpha \beta^2$ .
- (c) (i) f(x) = 2x + 1, for  $x \in \mathbb{R}$ . Show that there exists a real number k such that for all x, f(x + f(x)) = kf(x).
  - (ii) Show that for any real values of a, b and h, the quadratic equation  $(x-a)(x-b)-h^2=0$  has real roots.

3. (a) Find the real numbers p and q such that 2(p+iq)+i(p-iq)=5+i, where  $i^2=-1$ .

**(b)** (i) 
$$z_1 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$$
 and  $z_2 = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ .  
Evaluate  $z_1 z_2$ , giving your answer in the form  $x + iy$ .

(ii)  $w_1 = a + ib$  and  $w_2 = c + id$ . Prove that  $\overline{(w_1 w_2)} = \overline{(w_1)(w_2)}$ , where  $\overline{w}$  is the complex conjugate of w.

(c) Let 
$$A = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix}$$
 and  $P = \begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix}$ .

- (i) Evaluate  $A^{-1}PA$  and hence  $(A^{-1}PA)^{10}$ .
- (ii) Use the fact that  $(A^{-1}PA)^{10} = A^{-1}P^{10}A$  to evaluate  $P^{10}$ .
- **4.** (a) Show that  $3 \binom{n}{3} = n \binom{n-1}{2}$  for all natural numbers  $n \ge 3$ .
  - **(b) (i)** Show that  $\frac{2}{(2r-1)(2r+1)} = \frac{1}{2r-1} \frac{1}{2r+1}$ ,  $r \neq \pm \frac{1}{2}$ .
    - (ii) Hence, find  $\sum_{r=1}^{n} \frac{2}{(2r-1)(2r+1)}$ .
    - (iii) Evaluate  $\sum_{r=1}^{\infty} \frac{2}{(2r-1)(2r+1)}$ .
  - (c) (i) The sequence  $u_1, u_2, u_3, \dots$  is given by  $u_{n+1} = \sqrt{4 (u_n)^2}$  and  $u_1 = a > 0$ . For what value of a will all of the terms of the sequence be equal to each other?
    - (ii) p, q and r are three numbers in arithmetic sequence. Prove that  $p^2 + r^2 \ge 2q^2$ .

5. (a) Find the fifth term in the expansion of

$$\left(x^2-\frac{1}{x}\right)^6$$

and show that it is independent of x.

**(b) (i)** In a geometric series, the second term is 8 and the fifth term is 27. Find the first term and the common ratio.

(ii) Solve 
$$\log_4 x - \log_4 (x - 2) = \frac{1}{2}$$
.

- (c) Prove by induction that  $2^n \ge n^2$ ,  $n \in \mathbb{N}$ ,  $n \ge 4$ .
- **6.** (a) Differentiate  $\frac{1}{2+5x}$  with respect to x.
  - **(b)** (i) Given  $y = \tan^{-1} x$ , find the value of  $\frac{dy}{dx}$  at  $x = \sqrt{2}$ .
    - (ii) Differentiate, from first principles,  $\cos x$  with respect to x.
  - (c) Let  $f(x) = x^3 + 6x^2 + 15x + 36$ ,  $x \in \mathbb{R}$ .
    - (i) Show that f'(x) can be written in the form  $3[(x+a)^2+b]$ ,  $a,b \in \mathbb{R}$ , where f'(x) is the first derivative of f(x).
    - (ii) Hence show that f(x) = 0 has only one real root.

- 7. (a) An object's distance from a fixed point is given by  $s = 12 + 24t 3t^2$ , where s is in metres and t is in seconds. Find the speed of the object when t = 3 seconds.
  - **(b)** The parametric equations of a curve are:

$$x = 2\theta - \sin 2\theta$$
  
 $y = 1 - \cos 2\theta$  , where  $0 < \theta < \pi$ .

- (i) Find  $\frac{dy}{dx}$ .
- (ii) Show that the tangent to the curve at  $\theta = \frac{\pi}{6}$  is perpendicular to the tangent at  $\theta = \frac{2\pi}{3}$ .
- (c) Given that  $x = \frac{e^{2y} 1}{e^{2y} + 1}$ ,
  - (i) show that  $e^{2y} = \frac{1+x}{1-x}$
  - (ii) show that  $\frac{dy}{dx}$  can be expressed in the form  $\frac{p}{1-x^q}$ ,  $p,q \in \mathbb{N}$ .
- 8. (a) Find (i)  $\int \frac{1}{x^2} dx$  (ii)  $\int \cos 6x dx$ .
  - (b) Evaluate (i)  $\int_{3}^{6} \frac{dx}{\sqrt{36-x^2}}$  (ii)  $\int_{0}^{\frac{\pi}{3}} \sin x \cos^3 x dx$ .
  - (c) The graph of the function  $f(x) = ax^2 + bx + c$ from x = -h to x = h is shown in the diagram.
    - (i) Show that the area of the shaded region is  $\frac{h}{3} [2ah^2 + 6c].$



(ii) Given that  $f(-h) = y_1$ ,  $f(0) = y_2$  and  $f(h) = y_3$ , express the area of the shaded region in terms of  $y_1$ ,  $y_2$ ,  $y_3$  and h.

## Blank Page